4.8 Article

D-A1-D-A2 Backbone Strategy for Benzobisthiadiazole Based n-Channel Organic Transistors: Clarifying the Selenium-Substitution Effect on the Molecular Packing and Charge Transport Properties in Electron-Deficient Polymers

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 27, 期 33, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201701486

关键词

acceptor-acceptor strategy; electron-deficient polymers; organic transistors; selenium substitution

资金

  1. Heiwa Nakajima Foundation
  2. Ogasawara Foundation for the Promotion of Science and Engineering
  3. Support for Tokyotech Advanced Researchers (STAR)
  4. Japanese government (MEXT: Monbukagakusho)
  5. Grants-in-Aid for Scientific Research [16K13974] Funding Source: KAKEN

向作者/读者索取更多资源

Unipolar n-type semiconducting polymers based on the benzobisthiadiazole (BBT) unit and its heteroatom-substituted derivatives are for the first time synthesized by the D-A(1)-D-A(2) polymer-backbone design strategy. Selenium (Se) substitution is a very effective molecular design, but it has been seldom studied in n-type polymers. In this study, within the similar conjugated framework, the Se substitution effects on the optical, electrochemical, solid-state polymer packing, electron mobility, and air-stability of the target unipolar n-type polymers are unraveled. Replacing the sulfur (S) atom in the thiadiazole heterocycles with the Se atom leads to narrower bandgaps and deeper lowest unoccupied molecular orbital (LUMO) levels of the n-type polymers. Furthermore, the Sesubstituted polymer (pSeN-NDI) shows shorter lamellar packing distances and stronger edge-on pi-pi stacking interactions than its S-counterpart (pSN-NDI), as observed by the two-dimensional grazing-incidence wide-angle X-ray scattering (GIWAXS) patterns. With the deeper LUMO level and thin-film microstructures suitable for transistors, pSeN-NDI exhibits four-fold higher electron mobilities (mu(e)) than pSN-NDI. However, the other Se-containing polymer, pSeS-NDI, forms rather amorphous film structures, which is caused by its limited thermal stability and decomposition during the thermal annealing processes, thus giving rise to a lower mu(e) than its S-counterpart (pBBT-NDI). Most importantly, pBBT-NDI demonstrates an electron mobility of 0.039 cm(2) V-1 s(-1), which is noticeable among the unipolar n-type polymers based on the BBT and its analogs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据