4.8 Article

A Broad-Spectrum Inhibitor of CRISPR-Cas9

期刊

CELL
卷 170, 期 6, 页码 1224-1233

出版社

CELL PRESS
DOI: 10.1016/j.cell.2017.07.037

关键词

-

资金

  1. UC Office of the President, Multicampus Research Programs and Initiatives [MR-15-328599]
  2. Sandler Foundation
  3. Allen Distinguished Investigator Program, through The Paul G. Allen Frontiers Group
  4. National Science Foundation [MCB-1244557]
  5. NIH [GM115911]
  6. Canadian Institutes of Health Research [MOP-130482, MOP-136845]
  7. US National Science Foundation

向作者/读者索取更多资源

CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据