4.8 Article

Abnormal room temperature phosphorescence of purely organic boron-containing compounds: the relationship between the emissive behavior and the molecular packing, and the potential related applications

期刊

CHEMICAL SCIENCE
卷 8, 期 12, 页码 8336-8344

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7sc04098a

关键词

-

资金

  1. National Natural Science Foundation of China [21325416, 51573140]
  2. Open Fund of the State Key Laboratory of Luminescent Materials and Device in South China University of Technology [2017-skllmd-04]

向作者/读者索取更多资源

Purely organic materials with the characteristic of room-temperature phosphorescence (RTP) under ambient conditions demonstrate potential benefits in advanced optoelectronic applications. Exploration of versatile and efficient RTP compounds with low prices is full of challenges due to the slow intersystem crossing process and ultrafast deactivation of the active excited states of organic compounds. Here, a series of boron-containing phosphors were found to present RTP with long-lived lifetimes. Among these commercially available and cheap compounds, (4-methoxyphenyl) boronic acid (PBA-MeO) exhibits long-lived RTP, with a lifetime of 2.24 s, which is among the longest lifetimes of single-component small molecules. Our extensive experiments illustrate that both a rigid conformation and expanded conjugation induced by molecular alignment contribute to the persistent RTP. Because of strong intermolecular interactions via hydrogen bonds, these arylboronic acids easily form crystals and are quite appropriate for anti-forgery materials. Subsequently, we develop a precise, speedy and convenient inkjet printing technology for the fabrication of optoelectronic displays. Furthermore, PBA-MeO is used as an additive to feed Bombyx mori silkworms and shows low toxicity over inorganic materials. Our findings may pave a new way for the development of RTP phosphors and promote their use in practical applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据