4.6 Article

Lattice instability during phase transformations under multiaxial stress: Modified transformation work criterion

期刊

PHYSICAL REVIEW B
卷 96, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.96.054118

关键词

-

资金

  1. NSF [CMMI-1536925, DMR-1434613]
  2. Extreme Science and Engineering Discovery Environment (XSEDE) [TG-MSS170003, TG-MSS140033, MSS170015]
  3. ARO [W911NF-17-1-0225]
  4. ONR [N00014-16-1-2079]
  5. Iowa State University
  6. Division Of Materials Research
  7. Direct For Mathematical & Physical Scien [1434613] Funding Source: National Science Foundation

向作者/读者索取更多资源

A continuum/atomistic approach for predicting lattice instability during crystal-crystal phase transformations (PTs) is developed for the general loading with an arbitrary stress tensor and large strains. It is based on a synergistic combination of the generalized Landau-type theory for PTs and molecular dynamics (MD) simulations. The continuum approach describes the entire dissipative transformation process in terms of an order parameter, and the general form of the instability criterion is derived utilizing the second law of thermodynamics. The feedback from MD allowed us to present the instability criterion for both direct and reverse PTs in terms of the critical value of the modified transformation work, which is linear in components of the true stress tensor. It was calibrated by MD simulations for direct and reverse PTs between semiconducting silicon Si I and metallic Si II phases under just two different stress states. Then, it describes hundreds of MD simulations under various combinations of three normal and three shear stresses. In particular, the atomistic simulations show that the effects of all three shear stresses along cubic axes on lattice instability of Si I are negligible, which is in agreement with our criterion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据