4.2 Article

A shear-wave seismic system using full-waveform inversion to look ahead of a tunnel-boring machine

期刊

NEAR SURFACE GEOPHYSICS
卷 15, 期 3, 页码 210-224

出版社

EUROPEAN ASSOC GEOSCIENTISTS & ENGINEERS
DOI: 10.3997/1873-0604.2017014

关键词

-

资金

  1. European Commission's Seventh Framework Programme for Research, Technological Development and Demonstration [280712]
  2. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research, NWO)
  3. NWO

向作者/读者索取更多资源

In the near surface with unconsolidated soils, shear-wave properties can often be characterised better and with a higher resolution than compressional-wave properties. To enable imaging ahead of a tunnel-boring machine, we developed a seismic prediction system with a few shear-wave vibrators and horizontal receivers. The boring process is interrupted at regular intervals to carry out active surveys. The vibrators are then pushed against the rock or soil in front of the cutting wheel of the machine. The design of the vibrators is based on linear synchronous motor technology that can generate very low frequencies, starting at 5 Hz. These vibrators generate a force in a direction perpendicular to the tunnel axis. Horizontal receivers measure the particle velocity, mainly due to the horizontally polarised shear waves. Because imaging with conventional migration methods suffers from artefacts, caused by the incomplete aperture and inaccuracies in the assumed velocity model, we use two-dimensional horizontally polarised shear full-waveform inversion to resolve the subsurface shear properties. The classic cycle-skipping problem, which can make the application of full-waveform inversion cumbersome, is avoided by the capacity of the vibrators to generate low frequencies. In this paper, we demonstrate the capabilities of the proposed seismic system through a number of synthetic and field experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据