4.7 Article

The Neuroprotective Effect of Dimethyl Fumarate in an MPTP-Mouse Model of Parkinson's Disease: Involvement of Reactive Oxygen Species/Nuclear Factor-κB/Nuclear Transcription Factor Related to NF-E2

期刊

ANTIOXIDANTS & REDOX SIGNALING
卷 27, 期 8, 页码 453-471

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ars.2016.6800

关键词

neurodegeneration; central nervous system; Parkinson's disease; dimethyl fumarate

向作者/读者索取更多资源

Aim: Oxidative stress plays a key role in Parkinson disease (PD), and nuclear transcription factor related to NF-E2 (Nrf-2) is involved in neuroprotection against PD. The aim of the present study was to investigate a role for nuclear factor-kappa B (NF-kappa B)/Nrf-2 in the neurotherapeutic action of dimethyl fumarate (DMF) in a mouse model of PD and in vitro in SHSY-5Y cells. Results: Daily oral gavage of DMF (10, 30, and 100mg/kg) significantly reduced neuronal cell degeneration of the dopaminergic tract and behavioral impairments induced by four injections of the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Moreover, treatment with DMF prevented dopamine depletion, increased tyrosine hydroxylase and dopamine transporter activities, and also reduced the number of alpha-synuclein-positive neurons. Furthermore, DMF treatment upregulated the Nrf-2 pathway, increased NeuN(+)/Nrf-2(+) cell number in the striatum, induced activation of manganese superoxide dismutase and heme oxygenase-1, and regulated glutathione levels. Moreover, DMF reduced interleukin 1 levels, cyclooxygenase 2 activity, and nitrotyrosine neuronal nitrite oxide synthase expression. This treatment also modulated microglia activation, restored nerve growth factor levels, and preserved microtubule-associated protein 2 alterations. The protective effects of DMF treatment, via Nrf-2, were confirmed in in vitro studies, through inhibition of Nrf-2 by trigonelline. Innovation: These findings demonstrate that DMF, both in a mouse model of PD and in vitro, provides, via regulation of the NF-kappa B/Nrf-2 pathway, novel cytoprotective modalities that further augment the natural antioxidant response in neurodegenerative and inflammatory disease models. Conclusion: These results support the thesis that DMF may constitute a promising therapeutic target for the treatment of PD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据