4.6 Article

Coronary Plaque Microstructure and Composition Modify Optical Polarization A New Endogenous Contrast Mechanism for Optical Frequency Domain Imaging

期刊

JACC-CARDIOVASCULAR IMAGING
卷 11, 期 11, 页码 1666-1676

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jcmg.2017.09.023

关键词

cholesterol crystals; collagen; optical coherence tomography; optical frequency domain imaging; polarized light

资金

  1. National Institutes of Health [P41EB-015903, R01HL-119065]
  2. Terumo Corporation
  3. Swiss National Science Foundation
  4. Japan Heart Foundation
  5. Bayer Yakuhin Research Grant Abroad

向作者/读者索取更多资源

OBJECTIVES This study aimed to evaluate whether polarimetry, performed using a modified optical frequency domain imaging (OFDI) system, can improve the assessment of histological features relevant to characterizing human coronary atherosclerosis. BACKGROUND The microscopic structure and organization of the arterial wall influence the polarization of the infrared light used by OFDI. Modification of the OFDI apparatus, along with recently developed image reconstruction methods, permits polarimetric measurements simultaneously with conventional OFDI cross-sectional imaging through standard intravascular imaging catheters. METHODS The main coronary arteries of 5 cadaveric human hearts were imaged with an OFDI system capable of providing polarimetric assessment. Cross-sectional views of tissue birefringence, measured in refractive index units, and depolarization, expressed as the ratio of depolarized signal to total intensity, were reconstructed, together with conventional OFDI images. Following imaging, the vessels underwent histological evaluation to enable interpretation of the observed polarization features of individual tissue components. RESULTS Birefringence in fibrous tissue was significantly higher than in intimal tissue with minimal abnormality (0.44 x 10(-3) vs. 0.33 x 10(-3); p < 0.0001). Birefringence was highest in the tunica media (p < 0.0001), consistent with its high smooth muscle cell content, cells known to associate with birefringence. In fibrous areas, birefringence showed fine spatial features and close correspondence with the histological appearance of collagen. In contrast, necrotic cores and regions rich in lipid elicited significant depolarization (p < 0.0001). Depolarization was also evident in locations of cholesterol crystals and macrophages. CONCLUSIONS Intravascular measurements of birefringence and depolarization can be obtained using conventional OFDI catheters in conjunction with a modified console and signal processing algorithms. Polarimetric measurements enhance conventional OFDI by providing additional information related to the tissue composition and offer quantitative metrics enabling characterization of plaque features. (C) 2018 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据