3.8 Article

Properties of Cu-Based Shape-Memory Alloys Prepared by Selective Laser Melting

期刊

SHAPE MEMORY AND SUPERELASTICITY
卷 3, 期 1, 页码 24-36

出版社

SPRINGER INTERNATIONAL PUBLISHING AG
DOI: 10.1007/s40830-016-0088-6

关键词

CuNiAl; Mechanical behaviour; Transformation temperature; Ageing; Selective laser melting

资金

  1. DFG [PA 2275/4-1]

向作者/读者索取更多资源

Two shape-memory alloys with the nominal compositions (in wt.%) Cu-11.85Al-3.2Ni-3Mn and Cu-11.35Al-3.2Ni-3Mn-0.5Zr were prepared by selective laser melting (SLM). The parameters were optimised to identify the process window, in which almost fully dense samples can be obtained. Their microstructures were analysed and correlated with the shape-memory behaviour as well as the mechanical properties. Suction-cast specimens were also produced for comparison. Mainly, beta(1)' martensite forms in all samples, but 0.5 wt.% of Zr stabilises the Y phase (Cu2AlZr), and its morphology depends on the thermal history and cooling rate. After annealing, the Y phase is primarily found at the grain boundaries hampering grain coarsening. Due to the relative high cooling rates applied here, Zr is mostly dissolved in the martensite in the as-prepared samples and it has a grain-refining effect only up to a critical cooling rate. The Zr-containing samples have increased transformation temperatures, and the Y phase seems to be responsible for the jerky martensite-to-austenite transformation. All the samples are relatively ductile because they mostly fracture in a transgranular manner, exhibiting the typical double yielding. Selective laser melting allows the adjustment of the transformation temperatures and the mechanical properties already during processing without the need of a subsequent heat treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据