4.3 Article

Ultraviolet irradiation increases green fluorescence of dihydrorhodamine (DHR) 123: false-positive results for reactive oxygen species generation

期刊

出版社

JOHN WILEY & SONS LTD
DOI: 10.1002/prp2.303

关键词

Apoptosis; early and late apoptosis; extrinsic pathway Extra keywords if necessary; Collectins; Fas-Fas Ligand; lung inflammation; surfactant protein D (SP-D); TNF-TNFR

资金

  1. Canadian Institutes of Health Research [MOP-111012]
  2. Cystic Fibrosis Canada [3029]

向作者/读者索取更多资源

Dihydrorhodamine (DHR) 123 is a fluorophore commonly used for measuring reactive oxygen species (ROS), often after exposing cells to ultraviolet (UV) irradiation or oxidative burst inducers such as Phorbol 12-myristate 13-acetate (PMA). However, the negative effects of UV irradiation on oxidation of DHR123 itself to green fluorescence rhodamine (R) 123 under different experimental conditions (e.g., different buffers, media, cells, ROS detection techniques) have not been fully appreciated. We determined the effect of UV on DHR123 fluorescence, using a cell-free system, and A549 epithelial cells, NIH/3T3 fibroblast cells, Jurkat T cells, primary human T cells, HL-60 neutrophils and primary human neutrophils. We found that UV irradiation rapidly increases green fluorescence of DHR123 in cell-free solutions. The intensity of green fluorescence increases with increasing amounts of DHR123 and UV exposure. The fluorescence increase was greater in Roswell Park Memorial Institute medium (RPMI) than DMEM media. The presence of DMSO (0-1.25%, v/v) in RPMI further increases the fluorescence signal. Phosphate buffered solution (PBS) and Hanks' Balanced Salt Solution (HBSS) generate considerable background signal with DHR123, and increasing DMSO concentration greatly increases the fluorescence signal in these buffers. However, after UV irradiation the amount of DHR123 that remains unoxidized generates sufficient fluorescence signal to measure the ROS produced by H2O2 and peroxidase in vitro or Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-mediated ROS production within HL-60 neutrophils or primary human neutrophils. We conclude that UV irradiation oxidizes DHR123 to generate Rhodamine 123 (R123) green fluorescence signal, and that the R123 present in the culture supernatant could give erroneous results in plate reader assays. However, flow cytometry and fluorescence microscopy reliably detect ROS in cells such as neutrophils. Overall, avoiding false-positive results when detecting ROS using DHR123 requires selection of, agonists, the correct buffers, media, cell types, and measurement techniques.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据