4.3 Article

Design and fabrication of a 3D printed miniature pump for integrated microfluidic applications

出版社

KOREAN SOC PRECISION ENG
DOI: 10.1007/s12541-017-0152-y

关键词

3D printing; Peristaltic pump; Microfluidic chip; Microbioreactor; Miniaturization

向作者/读者索取更多资源

This paper presents design, implementation, and evaluation of a 3D printed miniature peristaltic pump based on a planetary gear structure. The miniature pump (minipump) is printed using a rigid opaque photopolymers (Vero) and the fabrication time for a single pump was in the order of few minutes. The function of the minipump is comparable to that of a benchtop peristaltic pump. It however uses gears instead of rollers to invoke peristalsis. The characterization of the minipump is performed by using deionized water and a honey solution with viscosity of about 170 cP as working fluids. The minipump has a linear flow rate range spanning from 40 mL center dot min-1 to 230 mL center dot min-1 and continues working fine even at the backpressure as high as 25 kPa. A temperature gradient microfluidic chip is fabricated as an additional testing platform for the minipump. Our experimental results demonstrate a successful interfacing between the chip and the minipump where the conceptual polymerase chain reaction (PCR) chip is established excellently without leaking or flow disruption within the microchannels. Moreover, the minipump shows good tolerance to bubbles, has a high reproducible output flow, and can operate continuously over a period of 35 hours.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据