4.6 Article

Selective Ion Exchange and Photocatalysis by Zeolite-Like Semiconducting Chalcogenide

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 23, 期 49, 页码 11913-11919

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/chem.201702418

关键词

open framework chalcogenide; selective dye capture; selective photocatalysis; semiconducting porous material

资金

  1. National Science Foundation [DMR-1506661]
  2. Division Of Materials Research
  3. Direct For Mathematical & Physical Scien [1506661] Funding Source: National Science Foundation

向作者/读者索取更多资源

The development of novel photocatalysts usually centers on features such as band structures, various nano-, micro-, or macro-forms, and composites in efforts to tune their light absorption and charge separation efficiency. In comparison, the selectivity of photocatalysts with respect to features of reactants such as size and charge has received much less attention, in part due to the difficulty in designing semiconducting photocatalysts with uniform pore size. Here, we use crystalline porous chalcogenides as a platform to probe reactant selectivity in photocatalytic processes. The 3-in-1 integration of high surface area, uniform porosity, and favorable band structures in such chalcogenides makes them excellent candidates for efficient and selective photocatalytic processes. We show that their photocatalytic activity and selectivity are closely related to their differing affinity and selectivity for different guest species. In particular, unlike common solid-state photocatalysts with neutral framework, the anionic nature of the porous chalcogenide framework used here endows them with a high degree of selectivity for cationic species in both guest exchange and closely coupled photocatalytic transformation of such guests. Another interesting discovery is the observation of an unusual ion exchange process involving a transient state of over-saturation of exchanged ions, which can be explained by a transition from an initially kinetically controlled process to a subsequent thermodynamically controlled one. This work is part of ongoing efforts to contribute to the development of a new generation of crystalline porous photocatalysts with custom-designed selectivity for various reactants or products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据