4.4 Article

Activation of the glmS Ribozyme Nucleophile via Overdetermined Hydrogen Bonding

期刊

BIOCHEMISTRY
卷 56, 期 33, 页码 4313-4317

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biochem.7b00662

关键词

-

资金

  1. National Science Foundation [CHE-1213667]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [1213667] Funding Source: National Science Foundation

向作者/读者索取更多资源

RNA enzymes, or ribozymes, catalyze internal phosphodiester bond cleavage using diverse catalytic strategies. These include the four classic strategies: in-line nucleophilic attack, deprotonation of the 2'-OH nucleophile, protonation of the 5'-O leaving group, and stabilization of developing charge on the nonbridging oxygen atoms of the scissile phosphate. In addition, we recently identified two additional ribozyme strategies: acidification of the 2'-OH and release of the 2'-OH from inhibitory interactions. Herein, we report inverse thio effects in the presence of glmS ribozyme variants and a 1-deoxyglucosamine 6-phosphate cofactor analogue and demonstrate that activation of the 2'-OH nucleophile is promoted by competitive hydrogen bonding among diverse ribozyme moieties for the pro-RP nonbridging oxygen. We conclude that the glmS ribozyme uses an overdetermined set of competing hydrogen bond donors in its active site to ensure potent activation and regulation by the cofactor. Nucleophile activation through competitive, overdetermined hydrogen bonding could be a general strategy for ribozyme activation and may be applicable for controlling the function of ribozymes and riboswitches in the laboratory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据