4.7 Article

Particle deposition and deformation from high speed impaction of Ag nanoparticles

期刊

ACTA MATERIALIA
卷 135, 期 -, 页码 252-262

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2017.05.062

关键词

Molecular dynamics simulations; Nanoparticle; Aerosol deposition

资金

  1. National Science Foundation [CMMI 1435949]
  2. Directorate For Engineering
  3. Div Of Civil, Mechanical, & Manufact Inn [1435949] Funding Source: National Science Foundation

向作者/读者索取更多资源

The impaction of a single Ag nanoparticle onto an (001) Ag substrate was studied as a function of particle diameter (2-9 nm) and impaction velocity (10-1500 m/sec) using molecular dynamics simulations. The final crystallographic structures were observed to transition from a polycrystalline to an epitaxial morphology as impaction velocity was increased and the velocity required to achieve epitaxy increased with particle size. To understand how the crystallographic structures evolved to their final state, the deformation mechanisms were then studied over a range of time scales, beginning immediately upon impaction. The observed mechanisms included disordering of the atoms and the initiation and propagation of partial dislocations. Deformation increased with impaction velocity due to increases in the degree of disordering and the partial dislocation density. At longer time scales, relaxation of the disordered particles produced epitaxial morphologies, whereas polycrystalline morphologies were observed following incomplete disordering. These results suggest that the microstructures of thick films produced by high speed impaction of nanoparticle aerosols are strongly influenced by processing parameters. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据