4.7 Article

Biotoxic impact of heavy metals on growth, oxidative stress and morphological changes in root structure of wheat (Triticum aestivum L.) and stress alleviation by Pseudomonas aeruginosa strain CPSB1

期刊

CHEMOSPHERE
卷 185, 期 -, 页码 942-952

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.07.088

关键词

Heavy metals; Wheat; Morphological changes; Pseudomonas aeruginosa; Antioxidant enzymes; Bioremediation

资金

  1. Department of Science and Technology, New Delhi, India

向作者/读者索取更多资源

Rapid industrialization and uncontrolled metal discharge into environment is a global concern for crop production. Metal tolerant bacterium isolated from chilli rhizosphere was identified as Pseudomonas aeruginosa by 16S rDNA sequence analysis. Pseudomonas aeruginosa tolerated high concentrations of Cu (1400 mu g ml(-1)), Cd (1000 mu g ml(-1)) and Cr (1000 mu g ml(-1)). Pseudomonas aeruginosa CPSB1 produced multiple plant growth promoting biomolecules in the presence and absence of metals. Strain CPSB1 solubilized P at 400 mu g ml(-1) of Cd, Cr and Cu. The strain was positive for indole-3-acetic acid (IAA), siderophores, hydrogen cyanide (HCN), ammonia (NH3) and 1-aminocyclopropane-1-carboxylate (ACC) deaminase when grown with/without metals. The phytotoxic effects on wheat increased with increasing Cd, Cr and Cu rates. The P. aeruginosa CPSB1 inoculated wheat in contrast had better growth and yields under Cu, Cd and Cr stress. The root dry biomass of inoculated plants was enhanced by 44, 28 and 48% at 2007 mg Cu kg(-1), 36 mg Cd kg(-1) and 204 mg Cr kg(-1), respectively. The bioinoculant enhanced number of spikes, grain and straw yields by 25,17 and 12%, respectively. Pseudomonas aeruginosa CPSB1 significantly declined the levels of catalase (CAT), glutathione reductase (GR) and superoxide dismutase SOD), proline and malondialdehyde (MDA), and reduced metal uptake by wheat. The study demonstrated that P. aeruginosa CPSB1 possessed plant growth promoting potentials, showed metal tolerance capability and had ability to counteract deleterious metal impacts. Due to these, P. aeruginosa CPSB1 could be used as bioinoculant for enhancing wheat production even in metal contaminated soils. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据