4.7 Article

Modulation of chondrocyte motility by tetrahedral DNA nanostructures

期刊

CELL PROLIFERATION
卷 50, 期 5, 页码 -

出版社

WILEY
DOI: 10.1111/cpr.12368

关键词

-

资金

  1. National Natural Science Foundation of China [81671031, 81470721]
  2. Sichuan Science and Technology Innovation Team [2014TD0001]

向作者/读者索取更多资源

ObjectivesContemporarily, a highly increasing attention was paid to nanoconstructs, particularly DNA nanostructures possessing precise organization, functional manipulation, biocompatibility and biodegradability. Amongst these DNA nanomaterials, tetrahedral DNA nanostructures (TDNs) are a significantly ideal bionanomaterials with focusing on the property that can be internalized into cytoplasm in the absence of transfection. Therefore, the focus of this study was on investigating the influence of TDNs on the chondrocytes locomotion. Materials and methodsTetrahedral DNA nanostructures was confirmed by 6% polyacrylamide gel electrophoresis (PAGE) and dynamic light scattering (DLS). Subsequently, the effect of TDNs on chondrocyte locomotion was investigated by real-time cell analysis (RTCA) and wound healing assay. The variation of relevant genes and proteins was detected by quantitative polymerase chain reaction (qPCR), western blotting and immunofluorescence respectively. ResultsWe demonstrated that tetrahedral DNA nanostructures have positive influence on chondrocytes locomotion and promoted the expression of RhoA, ROCK2 and vinculin. Additionally, upon exposure to TDNs with the concentration of 250nmolL(-1), the chondrocytes were showed the highest motility via both RTCA and wound healing assay. Meanwhile, the mRNA and protein expression of RhoA, ROCK2 and vinculin were also significantly enhanced with the same concentration. ConclusionsIt can be concluded that the TDNs with the optimal concentration of 250nmolL(-1) could extremely promoted the chondrocytes locomotion through facilitating the expression of RhoA, ROCK2 and vinculin. These results seemed to reveal that this special three-dimensional DNA tetrahedral nanostructures may be applied to cartilage repair and treatment in the future.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据