4.7 Article

Mullite-zirconia composites prepared from halloysite reaction sintered with boehmite and zirconia

期刊

APPLIED CLAY SCIENCE
卷 146, 期 -, 页码 70-80

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.clay.2017.05.037

关键词

Clay minerals; Halloysite; Gibbsite; Boehmite; Reaction sintering; Mullite-zirconia composites

向作者/读者索取更多资源

In this study, Algerian halloysite, a naturally occurring clay mineral, was used as low-cost precursor for the production of mullite-zirconia composites. The halloysite was reaction sintered with boehmite and zirconia in the temperature range 1250-1650 degrees C for 2 h. Differential thermal analysis (DTA), thermogravimetry (TG), dilatometry, high temperature X-ray diffraction (XRD), and scanning electron microscopy (SEM) complementary techniques were used to characterize the prepared materials. The influence of ZrO2 content on the microstructure, densification, hardness, and coefficient of linear thermal expansion of the composites was investigated. Algerian halloysite was found suitable material for the synthesis of low-cost mullite based composites. All prepared samples exhibited same phase transformations that ended at 1550 degrees C with the formation of monolithic mullite in halloysite-boehmite mixture and mullite-zirconia composites in halloysite-boehmite-zirconia mixture. The composite materials showed higher values of hardness and coefficient of linear thermal expansion compared with monolithic mullite. The composite containing 10% ZrO2 possessed the highest hardness value of 13.5 GPa. The composite containing 30% ZrO2 possessed the lowest value of linear coefficient of thermal expansion of 7.5725 x 10(-6) K-1 between 200 and 1500 degrees C.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据