4.6 Article

A novel microbial electrolysis cell (MEC) reactor for biological sulfate-rich wastewater treatment using intermittent supply of electric field

期刊

BIOCHEMICAL ENGINEERING JOURNAL
卷 125, 期 -, 页码 10-17

出版社

ELSEVIER
DOI: 10.1016/j.bej.2017.05.009

关键词

Microbial electrolysis cell; Sulfate reduction; Salt crystals formation; Intermittent electric field; Microbial community

资金

  1. National Natural Science Foundation of China [20877075]

向作者/读者索取更多资源

Microbial electrolysis cells (MEC), coupled with sulfate-reducing bacteria (SRB), was used to degrade sulfate-rich wastewater that is deficient in electron donors. However, because of the impact of electric double layers (EDLs), salt crystals formed on the electrode, thereby potentially retarding the continuity of sulfate removal during the whole operation. Here, an improved MEC reactor using intermittent electric field was established. It works better in sulfate removal for a longer period, which was higher than the conventional MEC reactor by 2.18-fold after 10 days. Observation on the activity of lactic dehydrogenase (LDH) and ATP revealed that the formation of salt crystals on the electrode led to plasmatorrhexis. Conversely, improved reactor contributed to extracellular substances production and prevented the salt crystal formation, which was conducive to biofilm formation as further verified by detection through SEM. Electrochemical impedance spectroscopy tests showed that the cathodic microorganisms accelerated electron transfer whereas the salt crystals increased the charge transfer resistance. High-throughput sequencing analysis illustrated that improved reactor could maintain the competitiveness of SRB in the microbial community for a longer period. Moreover, the improved reactor resulted in high species diversity, thereby showing the significant resistance of the microorganisms to arduous environments. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据