4.3 Article

K-shell X-ray emission from high energy pulsed C6+ ion beam impacting on Ni target

期刊

ACTA PHYSICA SINICA
卷 66, 期 14, 页码 -

出版社

CHINESE PHYSICAL SOC
DOI: 10.7498/aps.66.143401

关键词

X-ray; production cross section; high energy pulsed beam

资金

  1. National Natural Science Foundation of China [11605147, 11505248]
  2. Shaanxi Provincial Education Department, China [15JK1793]

向作者/读者索取更多资源

Accurate measurement of the ionization cross section of the target atom induced by collision between ions and atoms is of great significance for studying the atomic shell process and establishing a suitable theoretical model. The experimental data and the theoretical models mostly concentrate on the cases in the low energy region at present. Only a few experimental data of high energy region are reported due to the limitation of experimental conditions. Which theory is more suitable to describe the ionization cross section of the inner shell of the target atom caused by the high energy heavy ions, is necessarily studied experimentally. The C6+ ions provided by the Heavy Ion Research Facility in Lanzhou Electron Cooling Storage Ring, are used to bombard the Ni target, in which the K-shell X-ray of Ni is measured. The incident energies of C6+ ions are 165, 300, 350 and 430 MeV/u respectively. Through analyzing the intensity ratio of K-beta/K-alpha X-ray of Ni, it is found that the influence of incident energy on the intensity ratio of K-beta/K-alpha X-ray is not obvious. The intensity ratios of this experiment are greater than the experimental values of incident proton and the calculated values based on the Hartree-Slater theory, which may be caused by the multiple-ionization of the L shell. The production cross sections of Ni K-shell X-ray are calculated by the binary encounter approximation (BEA) model, the plane wave Born approximation (PWBA) model and the energy-loss coulomb-repulsion perturbed-stationary-state relativistic (ECPSSR) theory respectively, which are compared with the experimental results in this paper. It is found that the experimental cross section increases with the increasing incident energy, which is consistent with the trend of BEA model estimation, but the experimental value is obviously lower than the theoretical value. We think that BEA model needs to be modified when describing the ionization process in the high energy region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据