4.8 Article

Oxygen-Dependent Lipid Profiles of Three-Dimensional Cultured Human Chondrocytes Revealed by MALDI-MSI

期刊

ANALYTICAL CHEMISTRY
卷 89, 期 17, 页码 9438-9444

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.7b02265

关键词

-

资金

  1. Dutch Arthritis Association [13-2-402]
  2. Dutch Province of Limburg as part of the LINK program
  3. ReumaFonds [LLP-25, 13-2-402] Funding Source: researchfish

向作者/读者索取更多资源

Articular cartilage is exposed to a gradient of oxygen levels ranging from 5% at the surface to 1% in the deepest layers. While most cartilage research is performed in supra physiological oxygen levels (19-21%), culturing chondrocytes under hypoxic oxygen levels (<= 8%) promotes the chondrogenic phenotype. Exposure of cells to various oxygen levels alters their lipid metabolism, but detailed studies examining how hypoxia affects lipid metabolism in chondrocytes are lacking. To better understand the chondrocyte's behavior in response to oxygen, we cultured 3D pellets of human primary chondrocytes in normoxia (20% oxygen) and hypoxia (2.5% oxygen) and employed matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) in order to characterize the lipid profiles and their spatial distribution. In this work we show that chondrocytes cultured in hypoxia and normoxia can be differentiated by their lipid profiles. Among other species, phosphatidylglycerol species were increased in normoxic pellets, whereas phosphatidylinositol species were the most prominent lipids in hypoxic pellets. Moreover, spatial mapping revealed that phospahtidylglyycerol species were less prominent in the center of pellets where the oxygen level is lower. Additional analysis revealed a higher abundance of the mitochondrial-specific lipids, cardiolipins, in normoxic conditions. In conclusion MALDI-MSI described specific lipid profiles that could be used as sensors of oxygen level changes and may especially be relevant for retaining the chondrogenic phenotype, which has important implications for the treatment of bone and cartilage diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据