4.7 Article

Predicting Escherichia coli's chemotactic drift under exponential gradient

期刊

PHYSICAL REVIEW E
卷 96, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.96.032409

关键词

-

资金

  1. Royal Academy of Engineering, U.K [HEPI/1516/27]
  2. Project WBC - Indian Institute of Technology, Kharagpur

向作者/读者索取更多资源

Bacterial species are known to show chemotaxis, i.e., the directed motions in the presence of certain chemicals, whereas the motion is random in the absence of those chemicals. The bacteria modulate their run time to induce chemotactic drift towards the attractant chemicals and away from the repellent chemicals. However, the existing theoretical knowledge does not exhibit a proper match with experimental validation, and hence there is a need for developing alternate models and validating experimentally. In this paper a more robust theoretical model is proposed to investigate chemotactic drift of peritrichous Escherichia coli under an exponential nutrient gradient. An exponential gradient is used to understand the steady state behavior of drift because of the logarithmic functionality of the chemosensory receptors. Our theoretical estimations are validated through the experimentation and simulation results. Thus, the developed model successfully delineates the run time, run trajectory, and drift velocity as measured from the experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据