4.7 Article

Separating metric perturbations in near-horizon extremal Kerr spacetimes

期刊

PHYSICAL REVIEW D
卷 96, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.96.064017

关键词

-

资金

  1. NSF [PHY-1404569]
  2. Brinson Foundation
  3. Division Of Physics
  4. Direct For Mathematical & Physical Scien [1404569] Funding Source: National Science Foundation

向作者/读者索取更多资源

Linear perturbation theory is a powerful toolkit for studying black hole spacetimes. However, the perturbation equations are hard to solve unless we can use separation of variables. In the Kerr spacetime, metric perturbations do not separate, but curvature perturbations do. The cost of curvature perturbations is a very complicated metric-reconstruction procedure. This procedure can be avoided using a symmetry-adapted choice of basis functions in highly symmetric spacetimes, such as near-horizon extremal Kerr. In this paper, we focus on this spacetime and (i) construct the symmetry-adapted basis functions; (ii) show their orthogonality; and (iii) show that they lead to separation of variables of the scalar, Maxwell, and metric perturbation equations. This separation turns the system of partial differential equations into one of ordinary differential equations over a compact domain, the polar angle.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据