3.8 Article

Two-Phase MRF Model for Wet Clutch Drag Simulation

期刊

SAE INTERNATIONAL JOURNAL OF ENGINES
卷 10, 期 3, 页码 1327-1337

出版社

SAE INT
DOI: 10.4271/2017-01-1127

关键词

-

资金

  1. Ford Motor Company
  2. Dynax Corporation

向作者/读者索取更多资源

Wet clutch packs are widely used in today's automatic transmission systems for gear-ratio shifting. The frictional interfaces between the clutch plates are continuously lubricated with transmission fluid for both thermal and friction management. The open clutch packs shear transmission fluid across the rotating plates, contributing to measurable energy losses. A typical multi-speed transmission includes as many as 5 clutch packs. Of those, two to three clutches are open at any time during a typical drive cycle, presenting an opportunity for fuel economy gain. However, reducing open clutch drag is very challenging, while meeting cooling requirements and shift quality targets. In practice, clutch design adjustment is performed through trial-and-error evaluation of hardware on a test bench. The use of analytical methodologies is limited for optimizing clutch design features due to the complexity of fluid-structure interactions under rotating conditions. This article presents a two-phase Multiple Reference Frame (MRF) CFD model for simulating wet clutch behaviors, accounting for detailed design geometry. The model employs the Volume of Fluid (VOF) method to determine the air-fluid interface inside a computational domain. Model setup and simulation parameters, including initial conditions, boundary conditions, and relaxation factors are evaluated in terms of convergence behaviors. The model capabilities are validated against experimental data. Convergence of the CFD solver is demonstrated, capturing peak drag location as a function of rotating speed, until the phase fraction drops to a small value. The CFD model provides analytical insight into complex fluid interactions for grooved rotating plates, complementing hardware-based clutch design processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据