4.6 Article

First-principles calculations on the origin of ferromagnetism in transition-metal doped Ge

期刊

PHYSICAL REVIEW B
卷 96, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.96.104415

关键词

-

资金

  1. JSPS
  2. MEXT KAKENHI [22104012, 26286074, 16K21155]
  3. Building of Consortia for the Development of Human Resources in Science and Technology
  4. Supercomputer Center, the Institute for Solid State Physics, the University of Tokyo
  5. Japan Science and Technology agency (JST) PREST
  6. Grants-in-Aid for Scientific Research [26286074, 22104012] Funding Source: KAKEN

向作者/读者索取更多资源

Many researchers have shown an interest in Ge-based dilute magnetic semiconductors (DMSs) due to potential advantages for semiconductor spintronics applications. There has been great discussion about mechanisms of experimentally observed ferromagnetism in (Ge,Fe) and (Ge,Mn). We investigate the electronic structures, structural stabilities, magnetic exchange coupling constants, and Curie temperature of Ge-based DMSs, and clarify origins of the ferromagnetism, on the basis of density functional theory calculations. In both the (Ge, Fe) and (Ge, Mn) cases, the inhomogeneous distribution of the magnetic impurities plays an important role to determine the magnetic states; however, physical mechanisms of the ferromagnetism in these two materials are completely different. By the spinodal nanodecomposition, the Fe impurities in Ge gather together with keeping the diamond structure, so that the number of the first-nearest-neighbor Fe pairs with strong ferromagnetic interaction increases. Therefore, the Curie temperature drastically increases with the progress of the annealing. Our cluster expansion method clearly reveals that the other ordered compounds with different crystal structures such as Ge3Mn5 and Ge8Mn11 are easily generated in the (Ge, Mn) system. The estimated Curie temperature of Ge3Mn5 is in agreement with the observed Curie temperature in experiments. It should be considered that the precipitation of the ferromagnetic Ge3Mn5 clusters is an origin of high Curie temperature in (Ge, Mn).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据