4.5 Article

Rupture Dynamics and Chromatin Herniation in Deformed Nuclei

期刊

BIOPHYSICAL JOURNAL
卷 113, 期 5, 页码 1060-1071

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2017.07.014

关键词

-

资金

  1. U.S.-Israel Binational Science Foundation
  2. Israel Science Foundation
  3. Schmidt Minerva Center
  4. Villalon Foundation
  5. Div Of Civil, Mechanical, & Manufact Inn
  6. Directorate For Engineering [1548571] Funding Source: National Science Foundation

向作者/读者索取更多资源

During migration of cells in vivo, in both pathological processes such as cancer metastasis or physiological events such as immune cell migration through tissue, the cells must move through narrow interstitial spaces that can be smaller than the nucleus. This can induce deformation of the nucleus which, according to recent experiments, may result in rupture of the nuclear envelope that can lead to cell death, if not prevented or healed within an appropriate time. The nuclear envelope, which can be modeled as a double lipid bilayer attached to a viscoelastic gel (lamina) whose elasticity and viscosity primarily depend on the lamin composition, may utilize mechanically induced, self-healing mechanisms that allow the hole to be closed after the deformation-induced strains are reduced by leakage of the internal fluid. Here, we present a viscoelastic model of the evolution of a hole nucleated by deformations of the nuclear lamina and estimate the herniation of chromatin through the hole and its relation to the lamin expression levels in the nuclear envelope.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据