4.7 Article

An intelligent approach to optimize the EDM process parameters using utility concept and QPSO algorithm

出版社

ELSEVIER - DIVISION REED ELSEVIER INDIA PVT LTD
DOI: 10.1016/j.jestch.2016.07.003

关键词

Electrical discharge machining; Utility concept; Quantum behaved particle swarm optimization; Radial over cut

向作者/读者索取更多资源

Although significant research has gone into the field of electrical discharge machining (EDM), analysis related to the machining efficiency of the process with different electrodes has not been adequately made. Copper and brass are frequently used as electrode materials but graphite can be used as a potential electrode material due to its high melting point temperature and good electrical conductivity. In view of this, the present work attempts to compare the machinability of copper, graphite and brass electrodes while machining Inconel 718 super alloy. Taguchi's L-27 orthogonal array has been employed to collect data for the study and analyze effect of machining parameters on performance measures. The important performance measures selected for this study are material removal rate, tool wear rate, surface roughness and radial overcut. Machining parameters considered for analysis are open circuit voltage, discharge current, pulse-on-time, duty factor, flushing pressure and electrode material. From the experimental analysis, it is observed that electrode material, discharge current and pulse-on-time are the important parameters for all the performance measures. Utility concept has been implemented to transform a multiple performance characteristics into an equivalent performance characteristic. Non-linear regression analysis is carried out to develop a model relating process parameters and overall utility index. Finally, the quantum behaved particle swarm optimization (QPSO) and particle swarm optimization (PSO) algorithms have been used to compare the optimal level of cutting parameters. Results demonstrate the elegance of QPSO in terms of convergence and computational effort. The optimal parametric setting obtained through both the approaches is validated by conducting confirmation experiments. (C) 2016 Karabuk University. Publishing services by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据