4.5 Article

Geochemical interactions of shale and brine in autoclave experiments-Understanding mineral reactions during hydraulic fracturing of Marcellus and Eagle Ford Shales

期刊

AAPG BULLETIN
卷 101, 期 10, 页码 1567-1598

出版社

AMER ASSOC PETROLEUM GEOLOGIST
DOI: 10.1306/11101616026

关键词

-

资金

  1. ExxonMobil
  2. Statoil

向作者/读者索取更多资源

Geochemical interactions between shale and hydraulic fracturing fluid may affect produced-water chemistry and rock properties. It is important to investigate the rock-water reactions to understand the impacts. Eight autoclave experiments reacting Marcellus and Eagle Ford Shale samples with synthetic brines and a friction reducer were conducted for more than 21 days. To better determine mineral dissolution and precipitation at the rock-water interface, the shale samples were ion milled to create extremely smooth surfaces that were characterized before and after the autoclave experiments using scanning electron microscopy (SEM). This method provides an unprecedented level of detail and the ability to directly compare the same mineral particles before and after the reaction experiments. Dissolution area was quantified by tracing and measuring the geometry of newly formed pores. Changes in porosity and permeability were also measured by mercury intrusion capillary pressure (MICP) tests. Aqueous chemistry and SEM observations show that dissolution of calcite, dolomite, and feldspar and pyrite oxidation are the primary mineral reactions that control the concentrations of Ca, Mg, Sr, Mn, K, Si, and SO4 in aqueous solutions. Porosity measured by MICP also increased up to 95%, which would exert significant influence on fluid flow in the matrix along the fractures. Mineral dissolution was enhanced and precipitation was reduced in solutions with higher salinity. The addition of polyacrylamide (a friction reducer) to the reaction solutions had small and mixed effects on mineral reactions, probably by plugging small pores and restricting mineral precipitation. The results suggest that rock-water interactions during hydraulic fracturing likely improve porosity and permeability in the matrix along the fractures by mineral dissolution. The extent of the geochemical reactions is controlled by the salinity of the fluids, with higher salinity enhancing mineral dissolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据