4.6 Article

Elastocaloric effect on the piezoelectric potential of boron nitride nanotubes

期刊

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1361-6463/aa839e

关键词

boron nitride nanotube; piezoelectric nanomaterial; elastocaloric effect; piezoelectric potential

资金

  1. National Natural Science Foundation of China [11602074]
  2. Harbin Institute of Technology (Shenzhen Graduate School)

向作者/读者索取更多资源

In this paper, molecular dynamics (MD) simulations and analytical calculations are performed to study the influence of the elastocaloric effect (ECE) on the piezoelectric potential of hexagonal boron nitride (BN) nanotubes. To take into account the ECE in the simulations and calculations, the adiabatic condition is required. To reach this goal, the heat transfer between the BN nanotubes and their environment is excluded in the present study. In MD simulations, we find a large ECE in BN nanotubes, which will make the temperature of the BN nanotubes greatly change after external loads are applied on them. Moreover, the piezoelectric and dielectric properties of BN nanotubes calculated from MD simulations are found to be strongly dependent on the temperature. The temperature-dependent piezoelectric and dielectric properties together with the ECE are thus considered in the analytical calculations of the piezoelectric potential of BN nanotubes. The obtained analytical results reveal that the large ECE in BN nanotubes will make the piezoelectric potential of BN nanotubes strongly depend on the loading path of external loads. Specifically, stretching a BN nanotube is found to be more efficient than compressing the nanotube to generate the piezoelectric potential. These results are expected to significantly expand the knowledge of the electromechanical behaviours of piezoelectric nanomaterials and provide important guidelines for the optimum design of piezotronics nanodevices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据