4.7 Article

Experimental and numerical investigation on in-plane compression and shear performance of a pultruded GFRP composite bridge deck

期刊

COMPOSITE STRUCTURES
卷 180, 期 -, 页码 914-932

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2017.08.066

关键词

Polymer-matrix composites (PMCs); Laminates; Finite element analysis; Pultrusion

资金

  1. National Natural Science Foundation of the People's Republic of China [51578406, 51308070]
  2. China Scholarship Council (CSC) [201506260100]

向作者/读者索取更多资源

The in-plane compression and shear performance plays a significant role in achieving an optimum and reliable design of pultruded glass fiber-reinforced polymer (GFRP) bridge deck supported on steel girders that have been used in bridge decks retrofit application or new construction in the past decade. This paper presents a summary of several laboratory experiments that were performed on a pultruded GFRP bridge deck for pedestrian or light vehicular loading in order to evaluate both the deck's in-plane compression and shear properties. The experimental results showed that the average web thickness has a relatively larger influence on the in-plane shear behavior than the in-plane compressive behavior. Three-dimensional finite element models utilizing the Hashin's theory laminate failure, adhesive layers failure via cohesive element and initial geometry imperfections by using limited critical eigenmodes multiplied by empirical coefficient were employed to numerically simulate both the deck's in-plane compression and shear ultimate capacity and stiffness based on elastic engineering constants obtained from micromechanics. The numerical results agreed well with experimental results that could provide a reference for the design and construction of such type of pultruded composite bridge decks. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据