4.7 Article

Selective Release System for Antioxidative and Anti-Inflammatory Activities Using H2O2-Responsive Therapeutic Nanoparticles

期刊

BIOMACROMOLECULES
卷 18, 期 10, 页码 3197-3206

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.7b00844

关键词

-

资金

  1. Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea [HN1SC0104]

向作者/读者索取更多资源

We developed nanoparticles that were degraded by H2O2, a reactive oxygen species (ROS), to study a drug delivery system that targets damaged skin cells with oxidative stress and inflammation. In this study, tyrosol-incorporated copolyoxalate (TPOX) was synthesized by using 1,4-cyclohexanedimethanol, 4-(2-hydroxyethyl)phenol (tyrosol), and oxalyl chloride (M-w similar to 8835 Da). In vitro drug release behavior was assessed by loading nile red, a lipophilic fluorescent material such as quercetin, into the TPOX nanoparticles. The results indicated that the release of TPOX nanopaticles depended on the H2O2 concentration, but was pH-independent. We confirmed that TPOX nanoparticles under oxidative conditions in oxidative- or inflammatory-damaged cells selectively released entrapped nile red through the degradation by H2O2 for contributing to antioxidant and anti-inflammatory effects. For application, we prepared and evaluated the cytoprotective effect of quercetin-loaded TPOX (QTPOX) nanoparticles against oxidative and inflammatory stress. They showed a strong cytoprotective effect against H2O2-induced cell damage in HaCaT and RAW 264.7 cells. Also, QTPOX nanoparticles inhibited the main factors of LPS-induced inflammation, including iNOS, COX-2, IL-1, TNF-alpha, and NO production. These results suggest that QTPOX as H2O2-responsive therapeutic nanoparticles is highly potent and versatile as drug delivery system through selective and intensive drug release mechanism for the treatment of abnormal and inflammatory skin diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据