4.7 Article

Response of soil dissolved organic matter to microplastic addition in Chinese loess soil

期刊

CHEMOSPHERE
卷 185, 期 -, 页码 907-917

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.07.064

关键词

Microplastic; Dissolved organic carbon (DOC); Dissolved organic nitrogen (DON); Dissolved organic phosphorus (DOP); Excitation-emission matrix (EEM)

资金

  1. Natural Science Foundation of China [41371510]
  2. West Young Scholars Project of the Chinese Academy of Sciences [XAB2015A05]
  3. EU Horizon 2020 project [ISQAPER: 635750]

向作者/读者索取更多资源

Plastic debris is accumulating in agricultural land due to the increased use of plastic mulches, which is causing serious environmental problems, especially for biochemical and physical properties of the soil. Dissolved organic matter (DOM) plays a central role in driving soil biogeochemistry, but little information is available on the effects of plastic residues, especially microplastic, on soil DOM. We conducted a soil-incubation experiment in a climate-controlled chamber with three levels of microplastic added to loess soil collected from the Loess Plateau in China: 0% (control, CK), 7% (M1) and 28% (M2) (w/w). We analysed the soil contents of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), NH4+, NOT, dissolved organic phosphorus (DOP), and PO43- and the activities of fluorescein diacetate hydrolase (FDAse) and phenol oxidase. The higher level of microplastic addition significantly increased the nutrient contents of the DOM solution. The lower level of addition had no significant effect on the DOM solution during the first seven days, but the rate of DOM decomposition decreased in M1 between days 7 and 30, which increased the nutrient contents. The microplastic facilitated the accumulation of high-molecular weight humic-like material between days 7 and 30. The DOM solutions were mainly comprised of high molecular-weight humic-like material in CK and Ml and of high-molecular-weight humic-like material and tyrosine-like material in M2. The Microplastic stimulated the activities of both enzymes. Microplastic addition thus stimulated enzymatic activity, activated pools of organic C, N, and P, and was beneficial for the accumulation of dissolved organic C, N and P. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据