4.7 Article

Structure-activity relationships and molecular docking of thirteen synthesized flavonoids as horseradish peroxidase inhibitors

期刊

BIOORGANIC CHEMISTRY
卷 74, 期 -, 页码 201-211

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bioorg.2017.08.001

关键词

Flavones; Flavonols; Horseradish peroxidase inhibitor; Molecular docking; Structure-relationship

向作者/读者索取更多资源

For the first time, the structure-activity relationships of thirteen synthesized flavonoids have been investigated by evaluating their ability to modulate horseradish peroxidase (HRP) catalytic activity. Indeed, a modified spectrophotometrically method was carried out and optimized using 4-methylcatechol (4-MC) as peroxidase co-substrate. The results show that these flavonoids exhibit a great capacity to inhibit peroxidase with Ki values ranged from 0.14 +/- 0.01 to 65 +/- 0.04 mM. Molecular docking has been achieved using Auto Dock Vina program to discuss the nature of interactions and the mechanism of inhibition. According to the docking results, all the flavonoids have shown great binding affinity to peroxidase. These molecular modeling studies suggested that pyran-4-one cycle acts as an inhibition key for peroxidase. Therefore, potent peroxidase inhibitors are flavonoids with these structural requirements: the presence of the hydroxyl (OH) group in 7, 5 and 40 positions and the absence of the methoxy (O-CH3) group. Apigenin contributed better in HRP inhibitory activity. The present study has shown that the studied flavonoids could be promising HRP inhibitors, which can help in developing new molecules to control thyroid diseases. (C) 2017 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据