4.8 Article

The effect of anisotropy on the optimization of additively manufactured lattice structures

期刊

ADDITIVE MANUFACTURING
卷 17, 期 -, 页码 67-76

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.addma.2017.07.004

关键词

Additive manufacturing; Material anisotropy; Optimization; Lattice structures; Generalized optimality criteria

向作者/读者索取更多资源

The build orientation is one the most influential factors on material properties in additively manufactured parts. Advanced applications, such as lattice structures optimized for lightweight, often rely on small safety margins and are, hence, particularly affected, but research has not gone far beyond the pure empirical characterization. The focus of this paper is to investigate in detail the influence of anisotropy induced through fabrication on the mechanical performance and build orientation of whole structures when subject to optimization. First, a material property model for both compression and tension states is formulated. Then, the Generalized Optimality Criteria method is extended for fixed topology lattice structures with respect to constraints in displacement, stress, and Euler buckling. The two latter are formulated as local constraints that are handled in combination with Fully-Stressed Design recursion. The results reveal significant safety threads likely leading to premature failure when using properties from one-directional tests, as is so far the case, rather than the full anisotropy model developed herein. If used inversely, the algorithm yields the optimal orientation of a structure on the build platform, allowing further weight reduction while maintaining the mechanical properties. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据