4.7 Article

Demographic and dietary risk factors in relation to urinary metabolites of organophosphate flame retardants in toddlers

期刊

CHEMOSPHERE
卷 185, 期 -, 页码 918-925

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.07.015

关键词

Exposure; Organophosphate flame retardants; Toddlers; Metabolites; Dietary; Demographic

资金

  1. The University of Cincinnati Center for Environmental Genetics Eunice Kennedy Shriver National Institute of Child Health and Human Development [R01 HD068478-01A1]
  2. National Institute of Health [R01 ES016099]

向作者/读者索取更多资源

Organophosphate flame retardants (OPFRs), including Tris (1,3-dichloro-isopropyl) phosphate (TDCPP), triphenyl phosphate (TPP), and isopropylated triphenyl phosphate (ITP), are increasingly used in consumer products because of the recent phase out of polybrominated diphenyl ether (PBDE) flame retardants. OPFRs have been widely detected in adults and have been linked to reproductive and endocrine changes in adult males. Carcinogenicity and damage to immunologic, neurologic and developmental systems have been observed in human cell lines. Young children are especially vulnerable to OPFR exposure, but little is known about exposure levels or exposure risk factors in this population. We examined parent-reported demographic and dietary survey data in relation to OPFR urinary metabolite concentrations in 15- to 18-month old toddlers (n = 41). OPFR metabolites were detected in 100% of subjects. The metabolite of TPP, diphenyl phosphate (DPP) was detected most commonly (100%), with TDCPP metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCPP), detected in 85-95% of samples, and ITP metabolite, monoisopropylphenyl phenyl phosphate (ip-DPP), detected in 81% of samples (n = 21). Toddlers of mothers earning <$10,000 annually had geometric mean DPP concentrations 66% higher (p = 0.05) than toddlers of mothers earning >$10,000/year (7.8 ng/mL, 95% CI 5.03,12.11 and 4.69 ng/mL, 95% CI 3.65-6.04, respectively). While no dietary factors were significantly associated with OPFR metabolite concentrations, results suggested meat and fish consumption may be associated with higher DPP and BDCPP levels while increased dairy and fresh food consumption may be associated with lower DPP, BDCPP, and ip-DPP levels. Research with larger sample sizes and more detailed dietary data is required to confirm these preliminary findings. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据