4.7 Article

Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis

期刊

CHEMOSPHERE
卷 184, 期 -, 页码 1099-1107

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2017.06.095

关键词

Biomass conversion; Biorefinery; Food waste; Metal catalysts; HMF; Waste valorization

资金

  1. Hong Kong International Airport Environmental Fund (K-ZJKC)
  2. Environment and Conservation Fund [K-ZB78]

向作者/读者索取更多资源

This study aimed to produce a high-value platform chemical, hydroxymethylfurfural (HMF), from food waste and evaluate the catalytic performance of trivalent and tetravalent metals such as AlCl3, CrCl3, FeCl3, Zr(O)Cl-2, and SnCl4 for one-pot conversion. Starchy food waste, e.g., cooked rice and penne produced 4.0-8.1 wt% HMF and 46.0-64.8 wt% glucose over SnCl4 after microwave heating at 140 degrees C for 20 min. This indicated that starch hydrolysis was effectively catalyzed but subsequent glucose isomerization was rate-limited during food waste valorization, which could be enhanced by 40-min reaction to achieve 22.7 wt% HMF from cooked rice. Sugary food waste, e.g., kiwifruit and watermelon, yielded up to 13 wt% HMF over Sn catalyst, which mainly resulted from naturally present fructose. Yet, organic acids in fruits may hinder Fe-catalyzed dehydration by competing for the Lewis sites. In contrast, conversion of raw mixed vegetables as cellulosic food waste was limited by marginal hydrolysis at the studied conditions (120-160 degrees C and 20-40 min). It is interesting to note that tetravalent metals enabled HMF production at a lower temperature and shorter time, while trivalent metals could achieve a higher HMF selectivity at an elevated temperature. Further studies on kinetics, thermodynamics, and reaction pathways of food waste valorization are recommended. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据