4.7 Article

Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy

期刊

ACTA MATERIALIA
卷 138, 期 -, 页码 72-82

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2017.07.029

关键词

Medium-entropy alloy; Precipitation hardening; Precipitation behavior; Deformation mechanism

资金

  1. Hong Kong Research Grant Council (RGC) [9380075, 9042048, 9042204]
  2. Research Grant Council, Hong Kong [CityU 11205515]

向作者/读者索取更多资源

Combining high strength and good ductility is highly-desired yet challenging for conventional structural materials. Newly emerging concentrated multi-component alloys with face-centered-cubic structure provide an ultra-ductile matrix, and the precipitation hardening based on these alloys provides a very effective way to achieve a superior strength-ductility combination. Here, we report a high-strength CoCrNi-based medium-entropy alloy hardened by nanoscale L1(2)-(Ni, Co, Cr)(3)(Ti, AD-type particles with mixing heterogeneous and homogeneous precipitation behaviors. Compared to the single-phase CoCrNi medium-entropy alloy, the yield strength and the tensile strength of the precipitation strengthened CoCrNi medium-entropy alloy were increased by-70% to-750 MPa and-44% to -1.3 GPa, respectively, whereas a good ductility,-45%, was still achieved. The underlying deformation micro-mechanisms were systematically investigated using transmission electron microscope. In the single-phase CoCrNi medium-entropy alloy, the deformation mode was dominated by mechanical twinning. In the precipitation-hardened medium-entropy alloy, however, a high density of stacking faults prevailed. We revealed that the absence of mechanical twinning in this low stacking fault energy precipitation-strengthened medium-entropy alloy could relate to the increasing critical twinning stress affected by the channel width of the matrix. We further calculated that the increment of the yield strength was substantially from precipitation strengthening. Our present findings provide not only a fundamental understanding of the deformation micro-mechanism of the precipitation-strengthened CoCrNi medium-entropy alloy but also a useful guidance for the development of precipitation hardened concentrated multi-component alloys in the future. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据