4.7 Article

Mechanistic insights into TiO2 thickness in Fe3O4@TiO2-GO composites for enrofloxacin photodegradation

期刊

CHEMICAL ENGINEERING JOURNAL
卷 325, 期 -, 页码 647-654

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2017.05.092

关键词

Multifunctional composites; TiO2 thickness; Enrofloxacin; Photocatalytic degradation

资金

  1. National Basic Research Program of China [2015CB932003]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB14020201]
  3. National Natural Science Foundation of China [41471255, 41373123, 41425016, 21337004]

向作者/读者索取更多资源

Multifunctional Fe3O4@TiO2-GO (FTG) magnetic composites have extensive application potential. However, the effect of TiO2 shell thickness as well as its underlying mechanism remains murky and motivates our study. Herein, FTG composites with the optimized TiO2 shell thickness were synthesized. The characterization results show that the FTG photocatalysts had the advantages of easy magnetic separation, extended light absorption range (>600 nm), and efficient charge separation properties. The photo catalytic activity of FIG was performed for photo-degradation of enrofloxacin (ENR) under visible light. The FTG composites with TiO2 layer thickness of 17 nm exhibited the highest photocatalytic activity, and significant recycle efficiency. The photocatalytic mechanism, as characterized using electrochemistry, ESR, and in-situ QXAFS analysis, indicates that this optimal TiO2 shell thickness delicately balances the generation and effective transport of electrons, and therefore is optimal for the production of hydroxyl radicals. This study provides new insights into the fabrication of TiO2-based materials and their photocatalytic application. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据