3.8 Article

Simultaneous adsorption behavior of heavy metals onto microporous olive stones activated carbon: analysis of metal interactions

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s41207-017-0030-0

关键词

Activated carbon; Heavy metals; Complex adsorption; Metals interactions

资金

  1. University of Gabes, Tunisia

向作者/读者索取更多资源

The present work reports the synergistic and inhibitory adsorption effects involved in the multicomponent adsorption of heavy metal ions (Cu(II), Ni(II), and Cd(II)) from binary systems using chemically olive stone activated carbon (COSAC) as adsorbent. In order to evaluate the adsorption capacity of COSAC to remove studied heavy metals, adsorption of metal ions in single and binary systems were conducted. Kinetics adsorption rates in binary systems are very fast as compared to that in single ones and well represented by the pseudo second-order. Langmuir and Sips model fit mono-solute adsorption isotherms and the maximum adsorption capacity of COSAC decreased in the following order: Cd(II) > Ni(II) > Cu(II). In binary equilibrium systems, the effect of initial concentration of interfering metal ions on the removal of target ones was studied. Different mutual interactions between metal ions dealing with the decrease and the enhancement of inhibitory and synergetic effects were detected. Results showed that the effects on the adsorption of the metal ions in binary mixture strongly depend on the initial concentration of both metal ions in the solution. In most of the scenarios studied, the total amount of metal ions adsorbed was higher than the sum of the ones obtained in single solutions, suggesting synergetic interactions between the two metal ions. This study proves that COSAC is an effective adsorbent for the removal of heavy metals from multicomponent solutions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据