4.8 Article

Globularity-Selected Large Molecules for a New Generation of Multication Perovskites

期刊

ADVANCED MATERIALS
卷 29, 期 38, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201702005

关键词

light-emitting devices; perovskite solar cells; quasi-3D cations; wide band-gap semiconductors

资金

  1. Ministry of Science, Research and Technology of Iran
  2. Iranian's National Elites Foundation
  3. Iranian Nano Technology Initiative Council
  4. Marie Sklodowska Curie fellowship
  5. H2020 [665667]

向作者/读者索取更多资源

Perovskite solar cells (PSCs) use perovskites with an APbX(3) structure, where A is a monovalent cation and X is a halide such as Cl, Br, and/or I. Currently, the cations for high-efficiency PSCs are Rb, Cs, methylammonium (MA), and/or formamidinium (FA). Molecules larger than FA, such as ethylammonium (EA), guanidinium (GA), and imidazolium (IA), are usually incompatible with photoactive black-phase perovskites. Here, novel molecular descriptors for larger molecular cations are introduced using a globularity factor, i.e., the discrepancy of the molecular shape and an ideal sphere. These cationic radii differ significantly from previous reports, showing that especially ethylammonium (EA) is only slightly larger than FA. This makes EA a suitable candidate for multication 3D perovskites that have potential for unexpected and beneficial properties (suppressing halide segregation, stability). This approach is tested experimentally showing that surprisingly large quantities of EA get incorporated, in contrast to most previous reports where only small quantities of larger molecular cations can be tolerated as additives. MA/EA perovskites are characterized experimentally with a band gap ranging from 1.59 to 2.78 eV, demonstrating some of the most blue-shifted PSCs reported to date. Furthermore, one of the compositions, MA(0.5)EA(0.5)PbBr(3), shows an open circuit voltage of 1.58 V, which is the highest to date with a conventional PSC architecture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据