4.8 Article

3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors

期刊

ADVANCED MATERIALS
卷 29, 期 38, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201702648

关键词

active motion sensors; biomechanical energy harvesting; triboelectric nanogenerators

资金

  1. Thousands Talents program for pioneer researcher and his innovation team in China
  2. Chinese Academy of Science
  3. National Natural Science Foundation of China [51432005, 5151101243, 51561145021]
  4. China Scholarship Council
  5. fundamental Research Funds for the Central Universities, China [170310103]

向作者/读者索取更多资源

The development of wearable and large-area energy-harvesting textiles has received intensive attention due to their promising applications in next-generation wearable functional electronics. However, the limited power outputs of conventional textiles have largely hindered their development. Here, in combination with the stainless steel/polyester fiber blended yarn, the polydimethylsiloxane-coated energy-harvesting yarn, and nonconductive binding yarn, a high-power-output textile triboelectric nanogenerator (TENG) with 3D orthogonal woven structure is developed for effective biomechanical energy harvesting and active motion signal tracking. Based on the advanced 3D structural design, the maximum peak power density of 3D textile can reach 263.36 mW m(-2) under the tapping frequency of 3 Hz, which is several times more than that of conventional 2D textile TENGs. Besides, its collected power is capable of lighting up a warning indicator, sustainably charging a commercial capacitor, and powering a smart watch. The 3D textile TENG can also be used as a self-powered active motion sensor to constantly monitor the movement signals of human body. Furthermore, a smart dancing blanket is designed to simultaneously convert biomechanical energy and perceive body movement. This work provides a new direction for multifunctional self-powered textiles with potential applications in wearable electronics, home security, and personalized healthcare.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据