4.6 Article Proceedings Paper

Heat duty, heat of absorption, sensible heat and heat of vaporization of 2-Amino-2-Methyl-1-Propanol (AMP), Piperazine (PZ) and Monoethanolamine (MEA) tri-solvent blend for carbon dioxide (CO2) capture

期刊

CHEMICAL ENGINEERING SCIENCE
卷 170, 期 -, 页码 26-35

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2017.03.025

关键词

Heat duty; Absorption heat; Vaporization heat; Sensible heat; Specific heat capacity; ProMax 4.0 (R) simulation; Modeling; MEA PZ and AMP

资金

  1. NPRP from Qatar National Research Fund (a member of Qatar Foundation) [7 - 1154 - 2 - 433]
  2. Saskatchewan Innovation and Opportunity Graduate Scholarship

向作者/读者索取更多资源

Chemical absorption using reactive amines for carbon dioxide (CO2) capture is characterized by absorption heat, heat of desorption and heat duty for regeneration (Qreg, kJ/mol CO2). This study experimentally investigated the heat duty of tri-solvent blends containing AMP-PZ-MEA and the individual contribution of desorption heat, sensible heat and heat of vaporization to heat duty. The experimental conditions for absorption were 15 v/v% CO2 at 40 degrees C and atmospheric pressure while desorption was carried out 90 degrees C for loaded amine also at atmospheric pressure. The heat of desorption was experimentally determined using the specific heat capacity (kJ/kg degrees C) difference between the CO2 free and CO2 saturated amine solutions at the stated absorption conditions. Results showed that the heat duty of all the tri-solvent blends was significantly lower than that of the standard 5 kmol/m(3) MEA. Interestingly, the AMP-PZ-MEA tri-solvent blends exhibited only slightly lower heats of absorption when compared to MEA; however, they also showed significantly lower sensible heat and slightly lower heat of vaporization. Consequently, the tri-solvent blends exhibited significantly lower heat duties than the standard 5 kmol/m(3) MEA. In addition, a model analogous to a power law kinetic model was developed and used to predict the specific heat capacity of the AMP-PZ-MEA tri-solvent blends. The model accurately predicted the experimental results with an AAD of 0.59%. The overall results highlight the potential of using AMP-PZ-MEA blends for CO2 capture. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据