4.8 Article Proceedings Paper

Multi-objective design optimization of distributed-energy systems through cost and exergy assessments

期刊

APPLIED ENERGY
卷 204, 期 -, 页码 1299-1316

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2017.03.105

关键词

Distributed energy system; Design optimization; Multi-objective linear programming; Annual cost; Exergy efficiency

向作者/读者索取更多资源

In recent years, distributed energy systems (DESs) have been recognized as a promising option for sustainable development of future energy systems, and their application has increased rapidly with supportive policies and financial incentives. With growing concerns on global warming and depletion of fossil fuels, design optimization of DESs through economic assessments for short-run benefits only is not sufficient, while application of exergy principles can improve the efficiency in energy resource use for long run sustainability of energy supply. The innovation of this paper is to investigate exergy in DES design to attain rational use of energy resources including renewables by considering energy qualities of supply and demand. By using low-temperature sources for low-quality thermal demand, the waste of high quality energy can be reduced, and the overall exergy efficiency can be increased. The goal of the design optimization problem is to determine types, numbers and sizes of energy devices in DESs to reduce the total annual cost and increase the overall exergy efficiency. Based on a pre-established DES superstructure with multiple energy devices such as combined heat and power and PV, a multi-objective linear problem is formulated. In modeling of energy devices, the novelty is that the entire available size ranges and the variation of their efficiencies, capital and operation and maintenance costs with sizes are considered. The operation of energy devices is modeled based on previous work on DES operation optimization. By minimizing a weighted sum of the total annual cost and primary exergy input, the problem is solved by branch-and-cut. Numerical results show that the Pareto frontier provides good balancing solutions for planners based on economic and sustainability priorities. The total annual cost and primary exergy input of DESs with optimized configurations are reduced by 21-36% as compared with conventional energy supply systems, where grid power is used for the electricity demand, and gas-fired boilers and electric chillers fed by grid power for thermal demand. A sensitivity analysis is also carried out to analyze the influence of energy prices and energy demand variation on the optimized DES configurations. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据