4.7 Article

Model-based optimization of field-scale electrokinetic treatment of dredged sediments

期刊

CHEMICAL ENGINEERING JOURNAL
卷 328, 期 -, 页码 87-97

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2017.07.004

关键词

Numerical modelling; In situ; Cost minimization; Electrokinetic remediation; Heavy metals; Marine sediments

资金

  1. European Commission [LIFE12 ENV/IT/442 SEKRET]

向作者/读者索取更多资源

We developed a methodology for the cost optimization of electrokinetic treatment porous media contaminated by toxic metals. A two-dimensional reactive-transport model was implemented to simulate the transport of chemical species by diffusion, electromigration and electroosmosis, coupled with a geochemical model which calculates precipitation and dissolution of species, adsorption and desorption reactions, and aqueous speciation. The model was applied to the case study of an electrokinetic remediation prototype plant built in Livorno (Italy), treating 150 m(3) of dredged sediments contaminated by toxic metals. The plant consisted of an ex-situ treatment basin equipped with electrodic wells arranged on a rectangular grid, connected to an electrolyte management system for catholyte and anolyte pH control. We validated the model by comparing the simulated electric field with the measured electric potential and the simulated pH profiles with the pH values of field samples. Good agreement was achieved between the modelled and measured data. On the basis of the validated model, we performed a parametric study to evaluate the influence of electrode distance and sediment buffering capacity on treatment costs and calculated the overall cost as a function of these two parameters. The results and costs were evaluated in terms of Pb removal, which was taken as the representative toxic metal. The results revealed the existence of distinct minima, representing the best set of parameters which optimized the overall treatment costs. We believe that the methodology and results obtained can be employed as a valuable tool to support the evaluation and design of electrokinetic remediation systems. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据