4.7 Article

Finite-size effects in canonical and grand-canonical quantum Monte Carlo simulations for fermions

期刊

PHYSICAL REVIEW E
卷 96, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.96.042131

关键词

-

资金

  1. German Research Foundation (DFG) [SFB 1170 ToCoTronics, FOR 1807]

向作者/读者索取更多资源

We introduce a quantum Monte Carlo method at finite temperature for interacting fermionic models in the canonical ensemble, where the conservation of the particle number is enforced. Although general thermodynamic arguments ensure the equivalence of the canonical and the grand-canonical ensembles in the thermodynamic limit, their approach to the infinite-volume limit is distinctively different. Observables computed in the canonical ensemble generically display a finite-size correction proportional to the inverse volume, whereas in the grandcanonical ensemble the approach is exponential in the ratio of the linear size over the correlation length. We verify these predictions by quantum Monte Carlo simulations of the Hubbard model in one and two dimensions in the grand-canonical and the canonical ensemble. We prove an exact formula for the finite-size part of the free energy density, energy density and other observables in the canonical ensemble and relate this correction to a susceptibility computed in the corresponding grand-canonical ensemble. This result is confirmed by an exact computation of the one-dimensional classical Ising model in the canonical ensemble, which for classical models corresponds to the so-called fixed-magnetization ensemble. Our method is useful for simulating finite systems which are not coupled to a particle bath, such as in nuclear or cold atom physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据