4.7 Article

Hydrogels of polyaniline with graphene oxide for highly sensitive electrochemical determination of lead ions

期刊

ANALYTICA CHIMICA ACTA
卷 990, 期 -, 页码 67-77

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aca.2017.09.008

关键词

Polyaniline-graphene oxide hydrogel; Toxic heavy metal ions; Lead ions sensing; Square wave anodic stripping voltammetry; Water treatment

资金

  1. nanomission project [SR/NM/NS-20/2014]

向作者/读者索取更多资源

Conducting polymers with graphene/graphene oxide hydrogels represent a unique class of electrode materials for sensors and energy storage applications. In this article, we report a facile in situ method for the polymerisation of aniline resulting in the decoration of 1D conducting polyaniline (PANI) nanofibers onto the surface of 2D graphene oxide (GO) nanosheets followed by hydrogel formation at elevated temperature. The synthesized nanomaterial exhibits significant properties for the highly sensitive electrochemical determination as well as removal of environmentally harmful lead (Pb2+) ions. The square wave anodic stripping voltammetry (SWASV) determination of Pb2+ ions showed good electro-analytical performance with two linear ranges in 0.2-250 nM (correlation coefficient = 0.996) and 250 -3500 nM (correlation coefficient = 0.998). The developed protocol has shown a limit of detection (LOD) of about 0.04 nM, which is much lower than that of the World Health Organization (WHO) threshold limits. The prepared electrode showed an average of similar to 99.4% removal of Pb2+ ions with a relative standard deviation (RSD) of 3.4%. Selectivity of the electrode towards Pb2+ ions were tested in presence of potential interferences such as Na+, K+, Ca2+, Mg2+, Cu2+, Cd2+, Hg2+, Zn2+, Co2+, Ni2+, Fe2+ and Fe3+ of similar and higher concentrations. The sensor showed good repeatability and reproducibility. The developed protocol was used to analyse samples from industrial effluents and natural water samples. The results obtained were correlated with atomic absorption spectroscopy (AAS). (c) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据