4.5 Article

Assessment of bioenergy production from mid-rotation thinning of hardwood plantation: life cycle assessment and cost analysis

期刊

CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY
卷 19, 期 8, 页码 2021-2040

出版社

SPRINGER
DOI: 10.1007/s10098-017-1386-1

关键词

Life cycle assessment; Life cycle costing; Hardwood thinning; Bioenergy; Biomass

向作者/读者索取更多资源

Forestry thinning logs, a low-value by-product of the forestry industry, present an opportunity for bioenergy production. It can be converted into solid, liquid, and gaseous fuels via different conversion techniques. Comparative life cycle assessment and life cycle costing (LCC) analysis were conducted to evaluate six options: woodchip gasification for power generation; wood pellets gasification in combined heat and power plant; wood pellet combustion for domestic water and space heating; pyrolysis for power generation; pyrolysis with bio-oil upgrading to transportation fuels; and ethanol production for transportation fuel mix. The functional unit used in this study was the treatment of 1 Mg of biomass. Global warming; acidification; eutrophication; fossil depletion, human toxicity; and land use impact categories were considered. The LCC also included greenhouse gas (GHG) emissions costs. The effects of uncertainties in the system on the overall performance of the scenarios were also evaluated. The results showed that all options except for ethanol production are GHG emission negative. Woodchips gasification performed best in all environmental impact categories and had the lowest LCC ($177.6/Mg). Biomass drying consumed more than 50% of the energy requirement for all options except for production of liquid transportation fuels via upgrading of pyrolytic oil, in which case the fuel upgrading process was the most energy intensive. In terms of energy return, all options, except electricity production through pyrolysis, offered positive return. The results highlight the importance of using biomass with least possible processing in order to maximise environmental and energy return and minimise LCC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据