4.2 Article

Improving NOAA NAQFC PM2.5 Predictions with a Bias Correction Approach

期刊

WEATHER AND FORECASTING
卷 32, 期 2, 页码 407-421

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/WAF-D-16-0118.1

关键词

-

资金

  1. NOAA National Air Quality Forecast Capability Program
  2. U. S. Weather Research Program within the NOAA/OAR Office of Weather and Air Quality

向作者/读者索取更多资源

Particulate matter with an aerodynamic diameter less than or equal to 2.5 mu m (PM2.5) is a critical air pollutant with important impacts on human health. It is essential to provide accurate air quality forecasts to alert people to avoid or reduce exposure to high ambient levels of PM2.5. The NOAA National Air Quality Forecasting Capability (NAQFC) provides numerical forecast guidance of surface PM2.5 for the United States. However, the NAQFC forecast guidance for PM2.5 has exhibited substantial seasonal biases, with overpredictions in winter and underpredictions in summer. To reduce these biases, an analog ensemble bias correction approach is being integrated into the NAQFC to improve experimental PM2.5 predictions over the contiguous United States. Bias correction configurations with varying lengths of training periods (i.e., the time period over which searches for weather or air quality scenario analogs are made) and differing ensemble member size are evaluated for July, August, September, and November 2015. The analog bias correction approach yields substantial improvement in hourly time series and diurnal variation patterns of PM2.5 predictions as well as forecast skill scores. However, two prominent issues appear when the analog ensemble bias correction is applied to the NAQFC for operational forecast guidance. First, day-to-day variability is reduced after using bias correction. Second, the analog bias correction method can be limited in improving PM2.5 predictions for extreme events such as Fourth of July Independence Day firework emissions and wildfire smoke events. The use of additional predictors and longer training periods for analog searches is recommended for future studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据