4.8 Review

Nature-Inspired Structural Materials for Flexible Electronic Devices

期刊

CHEMICAL REVIEWS
卷 117, 期 20, 页码 12893-12941

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemrev.7b00291

关键词

-

资金

  1. National Research Foundation, Prime Minister's Office, Singapore, under the Campus for Research Excellence and Technological Enterprise (CREATE) programme, NRF [NRF2016NRF-NRFI001-21]
  2. Singapore Ministry of Education [MOE2015-T2-2-060]

向作者/读者索取更多资源

Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据