4.7 Article

Microstructural response of various chromium carbide based coatings to erosion and nano impact testing

期刊

WEAR
卷 386-387, 期 -, 页码 72-79

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.wear.2017.06.002

关键词

Solid particle erosion; Electron microscopy; Metal matrix composite; Hardness; Thermal spray coatings; Laser processing

向作者/读者索取更多资源

In this study, we demonstrate the microstructure dependency of erosion behaviour of laser clad, detonation sprayed and atmospheric plasma sprayed chromium carbide based coatings. The final chromium carbide content in all the coatings was a strong function of rapid solidification rate associated with the processes. In the laser clad coating majority of the chromium carbides re-solidified while in the thermally sprayed coatings chromium carbide re-solidification was hindered to a large extent. Hence, the final chromium carbide content in the thermally sprayed coating decreased with increased extent of particle melting during spraying. Decarburisation and oxidation during thermal spraying lead to the formation of chromium carbides with lower carbon content and chromium oxide(s). Laser clad and detonation sprayed coatings, with higher chromium carbide content, showed lower erosion rates and exhibited fewer brittle erosion events. Embrittlement due to excessive dissolution of chromium carbides into the matrix and poor splat bonding were found to be the reasons for higher erosion rate of the plasma sprayed coating. Scanning electron microscopy and quantification of single erodent impact events clearly established ductile material removal in the laser clad and detonation sprayed coating and brittle material removal in the plasma sprayed coating as the dominant mechanism(s). A good agreement was found between solid particle erosion testing and nano impact testing results.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据