4.6 Article

RNase 7 downregulates TH2 cytokine production by activated human T cells

期刊

ALLERGY
卷 72, 期 11, 页码 1694-1703

出版社

WILEY
DOI: 10.1111/all.13173

关键词

atopic dermatitis; RNase 7; TH2 cytokines

资金

  1. Bundesministerium fur Bildung und Forschung [FKZ0315917]

向作者/读者索取更多资源

BackgroundThe antimicrobial peptide (AMP) RNase 7 is constitutively expressed in the epidermis of healthy human skin and has been found to be upregulated in chronic inflammatory skin diseases such as atopic dermatitis and psoriasis. Activated T cells in lesional skin of patients with atopic dermatitis (AD) and psoriasis (PSO) might be directly exposed to RNase 7. In addition to their antimicrobial activity, immunoregulatory functions have been published for several AMPs. In this study, we investigated immunoregulatory effects of the antimicrobial peptide RNase 7 on activated T cells. MethodsIsolated human CD3+T cells were stimulated with RNase 7 and screened for possible effects by mRNA microarray analysis. The results of the mRNA microarray were confirmed in isolated CD4+T cells and in polarized TH2 cells using skin-derived native RNase 7 and a recombinant ribonuclease-inactive RNase 7 mutant. Activation of GATA3 was analysed by electrophoretic mobility shift assay. ResultsTreatment of activated human CD4+T cells and TH2 cells with RNase 7 selectively reduced the expression of TH2 cytokines (IL-13, IL-4 and IL-5). Experiments with a ribonuclease-inactive recombinant RNase 7 mutant showed that RNase 7 ribonuclease activity is dispensable for the observed regulatory effect. We further demonstrate that CD4+T cells from AD patients revealed a significantly less pronounced downregulation of IL-13 in response to RNase 7 compared to healthy control. Finally, we show that GATA3 activation was diminished upon cultivation of T cells with RNase 7. ConclusionOur data indicate that RNase 7 has immunomodulatory functions on TH2 cells and decreases the production of TH2 cytokines in the skin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据