4.6 Article

p38 MAPK Inhibition Improves Heart Function in Pressure-Loaded Right Ventricular Hypertrophy

出版社

AMER THORACIC SOC
DOI: 10.1165/rcmb.2016-0374OC

关键词

MRTF-A; p38 MAPK; pulmonary hypertension; right ventricle; SMADs

资金

  1. University of Giessen

向作者/读者索取更多资源

Although p38 mitogen-activated protein kinase (MAPK) is known to have a role in ischemic heart disease and many other diseases, its contribution to the pathobiology of right ventricular (RV) hypertrophy and failure is unclear. Therefore, we sought to investigate the role of p38 MAPK in the pathophysiology of pressure overload-induced RV hypertrophy and failure. The effects of the p38 MAPK inhibitor PH797804 were investigated in mice with RV hypertrophy/failure caused by exposure to hypoxia or pulmonary artery banding. In addition, the effects of p38 MAPK inhibition or depletion (by small interfering RNA) were studied in isolated mouse RV fibroblasts. Echocardiography, invasive hemodynamic measurements, immunohistochemistry, collagen assays, immunofluorescence staining, and Western blotting were performed. Expression of phosphorylated p38 MAPK was markedly increased in mouse and human hypertrophied/failed RVs. In mice, PH797804 improved RV function and inhibited cardiac fibrosis compared with placebo. In isolated RV fibroblasts, p38 MAPK inhibition reduced transforming growth factor (TGF)-beta-induced collagen production as well as stress fiber formation. Moreover, p38 MAPK inhibition/depletion suppressed TGF-beta-induced SMAD2/3 phosphorylation and myocardin-related transcription factor A (MRTF-A) nuclear translocation, and prevented TGF-beta-induced cardiac fibroblast transdifferentiation. Moreover, p38 MAPK inhibition in mice exposed to pulmonary artery banding led to diminished nuclear levels of MRTF-A and phosphorylated SMAD3 in RV fibroblasts. Together, our data indicate that p38 MAPK inhibition significantly improves RV function and inhibits RV fibrosis. Inhibition of p38 MAPK in RV cardiac fibroblasts, resulting in coordinated attenuation of MRTF-A cytoplasmic-nuclear translocation and SMAD3 deactivation, indicates that p38 MAPK signaling contributes to distinct disease-causing mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据